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Executive summary 

The AgrEcoMed project, funded under the European Union’s Horizon 2020 research and innovation 
program PRIMA and Grant Agreement PRIMA21_00018 is a research project aimed to fill the research 
gaps for implementing a biodiversity-based strategy for primary crops as cereal farming systems through 
an Agroecological approach adapted to environments in Mediterranean countries, efficient use of natural 
resources, reduction of pollution, circular economy. Such a goal will be achieved through innovative 
approaches to support the sustainable production of staple foods in the scenario of present and future 
climate changes. To this end, the project activities will be carried out through on-farm experimentations, 
focus groups, pilot actions, and demonstrative action. This document is Deliverable 1.2, “Demonstration 
fields”, of the AgrEcoMed project, which aims to describe the demonstration fields of best practices of 
new crop rotation and innovative farming techniques with an agroecological imprint. The experimental 
fields will be open to visitors from their start (about 12 months after the start of the project) until the 
closure of field activities (31 months). 
 
Keywords: PRIMA, AgrEcoMed, on-farm demonstration, dissemination, agroecological practices, 
sustainable agriculture 
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1. Project basis 

AgrEcoMed is a 36-month Research and Innovation Action (RIA) project under Grant Agreement No 
PRIMA21_00018 aiming to fill the research gaps for implementing a biodiversity-based strategy for 
primary crops as cereal farming systems through an Agroecological approach adapted to environments in 
Mediterranean countries, efficient use of natural resources, reduction of pollution, circular economy. The 
effective start of the project is 23/05/2022 and the project ends 36 months later, on 31/05/2025. The 
AgrEcoMed consortium consists of 8 partners from 4 countries (including two EU and non-EU countries). 
The project is coordinated by the University of Basilicata (UNIBAS, Italy). The list of Project Participants is 
included in the Grant Agreement, in the Consortium Agreement, and presented in Table 1. The project 
has an overall budget of 1,308,051.15 €. The budget detailed per beneficiary and the corresponding EU 
contribution of each beneficiary is detailed in Annex 2 to the Grant Agreement – Estimated budget of the 
action. 

 
Table 1. Partners of the AgrEcoMed project and representatives.  

Participant 
No * 

PI name Organization 
Short 
name 

Country Type of institution 

P1 Michele Perniola University of Basilicata UNIBAS Italy 
Higher Education 

Institution 

P2 Luigi Roselli University of Bari UniBa Italy 
Higher Education 

Institution 

P3 
Maria Assunta 

D’Oronzio 
Council for Agricultural 

Research and Economics 
CREA Italy 

Public Research 
organization 

P4 Ines Yacoubi 
Centre of Biotechnology 

of Sfax 
CBS Tunisia Public organization 

P5 Hanine Hafida 
University Sultan Moulay 

Slimane Beni Mellal 
USMS Morocco 

Higher Education 
Institution 

P6 Said Ennahli 
National School of 

Agriculture 
ENAM Morocco 

Public Research 
Organisation 

P7 Julio Berbel Universidad de Córdoba UCO Spain 
Higher Education 

Institution 

P8 
Neus Sanjuan 

Pellicer 
Universitat Politècnica de 

València 
UPV Spain 

Higher Education 
Institution 
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2. Demonstration fields 

A 3-year field trial (2022-2023-2024) will be conducted in the real setting farm in the Mediterranean area, 
comparing the cropping system practiced (conventional agriculture CA) with an alternation one in which, 
in addition to the introduction of new alternative crops, the cultivation technique will be set based on 
agroecological principles, the agronomic correctness of the individual cultivation technique interventions 
(rotation, tillage, fertilization, defense, etc.) and the consistency that the specific methods of farm 
management demonstrate they possess concerning environmental, social, cultural, economic conditions, 
etc. of the cultivation site (AA). In the above-said farms, “conventional agriculture” (CA) will be compared 
with the proposed “agroecological approach (AA). On the same rotating plots cultivated in the farm, part 
of the surface will be used to test the management regime on an agroecological basis (AA). Specifically, 
wheat and legumes will follow the same rotation scheme already in place on the farm, but the newly 
established varieties grown on the farm will be compared with the alternative varieties. The rotation 
scheme will instead be expanded (to increase the degree of biodiversity) by introducing and allocating 
part of the area for the cultivation of a brassica crop and a medicinal plant. In this rotation, wheat 
maintains the role of the main crop (given its suitability to the cultivation area), the leguminous for the 
balance of nutrients in the soil, the grass for improving and refining crops against weeds, the brassica crop 
for the soil pathogens control and finally the medicinal crop for triggering green chemistry chains with the 
possibility of producing extracts also useful for the agricultural sector itself in a circular economy 
perspective. Following the rotation scheme, the 5 crops in the rotation will all be present in each of the 
three years of experimentation. To make the management of rotation more ecological, in compliance with 
the knowledge acquired in the agronomic research, the tillage plan in the AA rotation will provide for 
plowing at 30 cm on legumes and medicinal crops (to better contain both weeds and the pathogens on 
these two crops which are more sensitive) and the minimum tillage on wheat and brassicas (where the 
control of weeds and pathogens is easier). This is to contain the carbon footprint on the one hand due to 
fuel consumption and to take advantage of the positive effect of plowing on the control of pathogens, 
weeds, and the physical characteristics of the soil, also for successive crops in rotation. The plant nutrition 
will be ensured by calculating the plant needs according to the crop potential uptake, the spatial variability 
and availability of the soil, and crop status due to the climatic trend of the cultivation period. On this basis, 
the DSS for the fertilization plan will be customized and used for the variable rate distribution of fertilizers 
through the "precision farming" technique. In the calculation of nutrients, the contribution deriving from 
the burying of crop residues from previous years will be considered (and this will allow for reducing the 
fertilizer doses), and organ-mineral fertilizers from the composting of crop residues and urban waste will 
be used, with a view to of circular economy and low environmental impact. The crop residues will be 
managed both through the burying and possible shredding in the field, and, based on the physicochemical 
characteristics and the isoumic coefficient, to start the farm composting processes to obtain a more stable 
and more effective fertilizer-soil conditioner (ENAM). In particular, we will study the possibility of using 
medicinal crop residues to obtain macerates which are also useful for the control of some plant 
pathogens. The crop residues will also constitute the substrate for their enhancement through the 
bioconversion operated by the Diptera Hermetia Illucens (WP3, task2, UNIBAS). Also, plant health and 
performance will be assessed to evaluate the benefits of these treatments. An environmental analysis of 
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the processes that allow the self-production of fertilizers and/or amendments for agricultural soil will be 
carried out, starting from the residues of crop cycles or other organic waste. These processes will be 
carried out on locally selected farms in participating countries. Weeds and pathogens control in the AA 
rotation will be carried out based on monitoring the damage threshold; commercially available low-
impact bio-molecules will be used and will be compared to the traditional one.  

 

2.1 Experimental site description 

The site is within L'azienda Soc. Coop. Agricola La Generale [latitude: 40.82460° N, longitude: 6.09348° N.] 
located in C.da Pezzalonga c.p.24, 85013 Genzano di Lucania, Potenza, the Basilicata region of southern 
Italy. The territory of the municipality of Genzano di Lucania has an area of 208.92 km2 and a population 
density of 27.23 inhabitants/km2.  

 
Source (Denora et al., 2022) 

Figure 1. Location of demonstration fields. 

The experimental site is characterized by hot summers followed by cold winters and with rainfall 
concentrated in the autumn-winter seasons. The mean annual precipitation is nearly 610 mm (Table 2). 
The average annual temperature is 19.2°C. The maximum average of the hottest month (July) reaches 
28.1°C, and that of the coldest month (January) is 3.3°C. 
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Table 2. Climatic parameters for Genzano di Lucania, Basilicata region, Southern Italy.  

Month 
Precipitation 
(mm/month) 

Wet days 
Tmp. min. 

(°C) 
Tmp. max. 

(°C) 
Tmp. mean. 

(°C) 

Rel. 
Hum. 
(%) 

Sunshine 
(%) 

Wind 
(2m) 
(m/s) 

Jan 59 11.5 3.3 9.7 6.5 76.3 42.1 3.1 
Feb 55 11.1 3.5 10.4 6.9 73.8 42.8 3.2 
Mar 52 11.2 4.8 12.6 8.7 71.2 44.8 3.2 
Apr 49 10.3 7.4 16.2 11.8 69 49.4 3.1 
May 40 7.8 11.4 21 16.2 68.1 56.1 2.6 
Jun 35 6.7 15 25.1 20 65.1 61.4 2.5 
Jul 23 4 17.5 28.1 22.8 61.7 69.9 2.5 

Aug 33 5.6 17.8 28 22.9 63.6 69.9 2.4 
Sep 51 7.1 15.1 24.5 19.8 66.1 63.5 2.2 
Oct 67 9.7 11.3 19.4 15.3 71.2 55.5 2.4 
Nov 72 11 7.4 14.8 11.1 75.7 47.1 2.8 
Dec 71 12.1 4.5 10.9 7.7 77.3 40.8 3.1 

The average relative content of 
particles of various sizes in the soil 
is 39.3% for clay, 25.9% for silt, and 
34.9% for sand. Therefore, the soil 
of Genzano di L. is classified as clay 
loam and is moderately calcareous 
with a moderate alkaline pH being 
more than 8.2 (Figure 2). The 
textural class of top and subsoil 
using the triangular diagram is 
shown in Figure 3. The average soil 
Electrical conductivity (EC) 1:2.5 is 
0.26 mS/cm. The average available 
water content is 100 mm. The 
average field capacity of the soil is 
35% while the wilting point is 22%. 
The average humidity is 30%. 
Elevations range from 347 to 365 
meters above sea level (Figure 4). 
The average nitrogen content is 1.2 
g/kg while organic carbon is 1.2%. 

 

Figure 2. Soil texture of demonstration fields. 
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Figure 3. The triangular diagram of the basic soil textural classes of topsoil (yellow/left) and subsoil 
(blue/right). 

 

 

Figure 4. The altitude map of demonstration fields.  
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2.2 Experimental design and management 

The demonstration fields are organized in different demonstration plots (Figure 5) hereafter identified as 
mono-cropping, legumes, intercropping, cereals, and medicinal. The trial will be conducted under rain-fed 
conditions using a randomized block design. Field operations included primary and secondary tillage, 
fertilizer application, planting, harvesting, and post-harvest straw management for all plots. 
 

 
 
Figure 5. The layout of demonstration fields. 

 

Table 3. Demonstration plots, size, and crops selected.  

Plot names Area [ha] Crops 

Mono-cropping 1.04 Wheat (cv. Tirex) 

Legumes 2.73 
Protein pea (cv. Aviron), Chickpea (cv. Pascià), Chickpea 

(cv. Sultano), Lentil (cv. Eston), Lentil (cv. Laird) 

Intercropping 2.1 
Wheat (cv. Tirex), Vetch (cv. Ereica), Trifolium incarnatum 

(cv. Kardinal)  

Cereals 3.04 
Wheat (cv. Tirex), Wheat (cv. Svevo), Wheat (cv. Marco 

Aurelio); Wheat (cv. Senatore Capelli) 

Medicinal 2.91 
Rapeseed (cv. SY Harnas), Coriander (Coriandrum 

sativum), Mugworts (Artemisia) 

Intercropping 

Cereals 

Medicinal 

Legumes 

Mono-cropping 
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Table 4. Cropping strategies.  

No Cropping strategy Plot location 
1 Wheat mono-cropping (cv. Tirex) - seeding rate at 250 kg/ha Mono-cropping 
2 High input wheat mono-cropping (cv. Tirex) - seeding rate at 250 kg/ha Cereals 
3 Wheat (cv. Tirex) - seeding rate at 250 kg/ha Cereals 
4 Wheat with Trichoderma technology/strains - seeding rate at 250 kg/ha Cereals 
5 Wheat (cv. Tirex) - seeding rate at 250 kg/ha -  with compost Cereals 
6 Wheat (cv. Svevo) - seeding rate at 250 kg/ha - with compost Cereals 

7 
Wheat (cv. Tirex, M. Aurelio, Svevo, and Cappelli) - seeding rate at 250 
kg/ha - with inorganic soil conditioner (Bioreactive) 

Cereals 

8 
Wheat (cv. Tirex, M. Aurelio, Svevo, and Cappelli) - seeding rate at 250 
kg/ha - without inorganic soil conditioner (Bioreactive) 

Cereals 

9 
Wheat (cv. Tirex) - seeding rate at 250 kg/ha - with only biostimulants 
(BlueN) 

Cereals 

10 Wheat (cv. Tirex) - seeding rate at 250 kg/ha - with only fertilization Cereals 

11 
Wheat (cv.  Tirex) - seeding rate at 250 kg/ha - with fertilization and 
biostimulants (BlueN) 

Cereals 

12 Wheat (cv. Tirex) - seeding rate at 250 kg/ha  Intercropping 
13 Wheat (cv. Tirex) - seeding rate at 150 kg/ha  Intercropping 

14 
Wheat (cv. Tirex) - seeding rate at 150 kg/ha (cv. Tirex) with Vetch 
(Vicia sativa L.) seeding rate at 80 kg/ha 

Intercropping 

15 
Wheat (cv Tirex) seeding rate at 150 kg/ha with Clover (trefoil) seeding 
rate at 35 kg/ha 

Intercropping 

16 Protein pea (cv. Aviron) - seeding rate at 180 kg/ha Legumes 
17 Chickpea (cv. Pascià) - seeding rate at 230 kg/ha Legumes 
18 Chickpea (cv. Sultano) - seeding rate at 200 kg/ha Legumes 
19 Lentil (cv. Eston) - seeding rate at 220 kg/ha Legumes 
20 Lentil (cv. Laird) - seeding rate at 100 kg/ha Legumes 
21 Rapeseed (cv. SY Harnas)  - seeding rate at 3.5 kg/ha Medicinal 
22 Coriander (Coriandrum sativum) - seeding rate at 20 kg/ha Medicinal 
23 Mugworts (Artemisia) - seedling rate at 22.7 and 44.45 seedling/ha Medicinal 
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2.2.1 Mono-cropping demonstration fields 

Mono-cropping or continuous 
monoculture is the agricultural practice of 
growing a single crop year after year on 
the same land. Wheat, corn, and soybeans 
are three common crops often grown 
using mono-cropping techniques. By 
growing just one crop species in a field at 
a time, monocultures enable farmers to 
use machinery, increasing the efficiency of 
activities like planting and harvesting. 
Moreover, it saves time and reduces the 
demand for manual labor, is easier to 
manage, and enables high production 
efficiency, resulting in high yields. Winter 
wheat monoculture is recommended due 
to its economic impact (Bouatrous et al., 
2022). Wheat-based monoculture is 
common in the Mediterranean region. It is 

applied commonly in several parts of Mediterranean countries such as Morocco, Syria, and Turkey. Crops 
produced on monoculture plantations are often subsidized by the government. Despite the economic and 
yield advantages, cultivating cereals in monoculture systems impoverishes both organic matter and 
microbiological life in the soil (Woźniak, 2020), increases the risk of disease and pest outbreaks, increased 
weed infestation contributing to the decrease in grain yield and quality and soil fertility (Bouatrous et al., 
2022). Monoculture cereal systems could reduce productivity in dry areas (Gandía et al., 2021). The effects 
of mono-cropping can be extremely detrimental to the environment as it is associated with the intensive 
use of agricultural inputs.  
The AgrEcoMed project will look into the impact of continuous wheat mono-cropping on yield, yield 
components, and grain quality in durum wheat. In the experimental fields, a wheat mono-cropping system 
(Figure 6) was designed. On 22 December 2022, durum wheat (cv. Tirex) was seeded with a conventional 
seeder at a seeding rate of 250 kg/ha. Tirex is an early variety cultivar of Italian origin that is well-known 
for its high yield and resistance to cold and disease. Crop leaf chlorophyll content, leaf area index (LAI), 
weed, and pathogen load, gas exchange, and soil organic matter will be determined at different growth 
stages and quantitative aspects of yield will be measured at the end of the cycle. The leaf chlorophyll 
content is one of the most important factors for the growth of winter wheat. It helps to understand the 
nutritional status of the plant, and scientifically guide fertilization management to ensure good crop 
quality and yield. The objective of pathogen load will be to explore strategies to control the potential 
hazardous pathogens in wheat grain and wheat flour. Leaf area index (LAI), as an essential parameter of 
wheat growth, can provide dynamic information during wheat growth. 
 

 

Figure 6. The layout of mono-cropping demostration 
fields.  
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2.2.2 Legumes demonstration fields 

Loss of biodiversity in the 
Mediterranean Region is 
one of the main reasons for 
the negative effect on the 
environment and crop 
yields, soil degradation, and 
water over-exploitation, 
particularly in the rain-fed 
cropping systems of 
Mediterranean areas. The 
rotation of crops is one of 
the most important 
agronomic practices that 
may have a significant 
effect on crop quality and 
quantity. Crop rotation has 
been suggested as a general 
strategy to sustain yields 
and reduce the risk of yield 
losses (Marini et al., 2020). 
It is used to overcome soil sickness, improvement of soil physical structure and aggregation, the increasing 
diversity of soil microbiota and associated beneficial microbes, and control soil-borne, as well as airborne, 
pathogens by breaking their natural life cycle (Woo et al., 2022). It could also mitigate the effects of 
climate change and market variability (Selim, 2019).  
Grain legumes grown in rotation with annual cereal crops contribute to the total pool of nitrogen in the 
soil and improve the yields of cereals (Danga et al., 2009). However, the anticipated N benefits of the 
legume may be positive or negative depending on the legume species and its interaction with the 
environment. Dry peas, lentils, and chickpeas are the most common pulses produced in the world and are 
typically grown in rotation (i.e., alternating years) with cereal grains. Consumer demand for pulses has 
increased due to the demand for plant-based protein (Thavarajah et al., 2022). The Chickpea (Cicer 
arietinum L.) is the third most important grain legume in the world, after the bean and the pea. It is an 
important cool-season food legume crop that is mainly cultivated as a rain-fed crop.  
The cultivated area in the world is about 11 million hectares. India is the largest chickpea producer in the 
world producing more than 60 % of the world's chickpeas1. Chickpea is native to the Mediterranean region 
and the Middle East. The seeds are high in fiber and protein and are a good source of iron, phosphorus, 
and folic acid (Sellami et al., 2021). Lentil (Lens culinaris Medikus) is a protein-rich cool-season food 
legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins (Choukri et 

                                                           
1 https://www.atlasbig.com/en-us/countries-chickpea-production 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The layout of legume demostration fields.  
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al., 2020). Lentils contain a high level of protein (20-30%) and have been reported as tolerant to high 
temperatures and drought. Worldwide more than 6.3 million tons of lentils are produced per year with 
Canada, India, and Turkey as the biggest world producers2. Dry pea or field pea (Pisum sativum L.) is one 
of the most important and highly productive cool season pulse crops grown worldwide. Yellow peas and 
green peas are the two most commonly available varieties of dry peas. Nutritionally, dry pea (Pisum 
sativum L.) is a rich source of low-digestible carbohydrates, protein, and micronutrients (Thavarajah et al., 
2022). The top producer of green peas – by far – is China, followed by India, USA, France, and Egypt. 
An objective of AgrEcoMed is to identify wider crop rotations (Figure 7) introducing legumes, forage crops, 
and alternative crops like medicinal species that contribute to improved land management practices on 
the production system and enhancement of agroecosystem sustainability. AgrEcoMed project's three-
year rotation includes grain legumes (specifically, chickpeas, lentils, and peas) field with wheat and 
medicinal plants. The legume plots include Sicilian organic chickpeas (cv. Pascià) with a seeding rate of 
230 kg/ha, chickpeas (cv. Sultano) with 200 kg/ha, Canadian lentil cultivars “Eston” and “Laird” with 200 
and 100 kg/ha, and winter pea (cv. Aviron) with 180 kg/ha. The long-term effect of crop rotations 
(functionally diverse rotations vs. mono-cropping), the occurrence of plant disease, physical (e.g., bulk 
density), chemical (e.g., soil organic carbon, total nitrogen, cation exchange capacity, pH, etc.,) and 
biological (e.g., microbial biomass carbon and nitrogen) soil properties, nitrogen fertilizer (with vs. without 
nitrogen), nitrogen management (high vs. VRT) and crop yield will be evaluated for understanding the 
synergistic effects of crop rotations. 

 
2.2.3 Medicinal plants demonstration fields 

In agriculture farming systems, the 
valorization of biodiversity is 
strictly related to the planning of 
wide and rational crop rotations 
also with alternative species as 
medicinal plants, and to the 
valorization of local genotypes and 
restoration of Mediterranean 
biodiversity. Brassica napus L. (B. 
napus L) commonly known as 
rapeseed (or canola), is one of the 
cultivated medicinal food plants in 
Middle Asia, North Africa, and 
West Europe (Soodabeh Saeidnia, 
2012).  
Rapeseed oil is used for industrial 
and culinary purposes. Rapeseed 

                                                           
2 https://www.atlasbig.com/en-ca/countries-by-lentil-production 

 

 

 

 

 

 

 

 

 

 

Figure 8. The layout of medicinal demonstration fields.  
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is reported to have three to four times higher proteins than rice and wheat (Raboanatahiry et al., 2021). 
Rapeseed crop in rotation with wheat generally increases wheat yields (Mazzilli and Ernst, 2019) and could 
supplement nutrients in the soil (Raboanatahiry et al., 2021). Coriander (Coriandrum sativum L.) is one of 
the most important essential oil crops on a global scale (Harizanova et al., 2022). It is one of the most 
useful essential oil-bearing spices as well as medicinal plants, belonging to the family 
Umbelliferae/Apiaceae. The leaves and seeds of the plant are widely used in folk medicine in addition to 
their use as a seasoning in food preparation (Mandal and Mandal, 2015).  
On the same rotating plots cultivated in the AgrEcoMed demonstration farm, part of the surface will be 
used to test and grow medicinal plants (Figure 8) such as Coriandrum sativum L. (C. sativum) with 20 
kg/ha, Rapeseed (cv. SY Harnas) with 3.5 kg/ha, and Mugworts (cv. Artemisia). The AgrEcoMed will study 
the feasibility of medicinal crops in rotation with wheat and grain legumes and evaluate their potential to 
improve yields, economic profitability, and the sustainable protection of field crops. Nitrogen fertilizer 
(with vs. without nitrogen), nitrogen management (high vs. VRT), and crop yield will be evaluated for 
understanding the synergistic effects of medicinal plants. 
 
2.2.4 Intercropping demonstration fields 

Nitrogen management adapted to crop and field conditions ensures higher yield and protein content 
However, several abiotic and biotic factors (e.g. water deficit and weed competition, respectively) may 
limit the profitability of spring nitrogen fertilization, and the high cost of off-farm organic fertilizers may 
be prohibitive (Vrignon-Brenas et al., 2016). If forage legumes are associated with wheat, simultaneously 
or successively, they can 
help to reduce the impact of 
limiting factors through the 
ecological services they 
provide.  Intercropping is 
defined as the agronomic 
practice of growing two or 
more crops on the same field 
at the same time. The major 
benefits of intercropping are 
(1) increasing the rate of 
crop production, with the 
advantage of simultaneously 
decreasing the risk of total 
crop reduction, and (2) 
controlling weeds. 
Intercropping is considered 
by its advocates to be a 
sustainable, environmentally sound, and economically advantageous cropping system (Khanal et al., 
2021). Intercropping legumes with cereals for forage production is a sustainable technique showing 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The layout of medicinal demonstration fields.  
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several environmental benefits (Lithourgidis et al., 2007). Intercropping has shown significant potential to 
increase resource efficiency and resilience against biotic and abiotic stresses, thereby allowing to deliver 
yield gains without increased inputs or stabilizing yields with decreased inputs3. Most research findings 
showed that the yield of intercropping is often higher than sole cropping (Bitew et al., 2021). Intercropping 
also enhances the competitive ability of crops for nutrients and water related to monoculture systems. It 
provides year-round ground cover, or at least for a longer period than monocultures, to protect the soil 
from desiccation and erosion. It improves soil health and delivers multiple ecosystem services. by 
increased yield, better soil quality, and soil C sequestration (Cong et al., 2015) through decreasing tillage 
frequency and soil disturbance, and increasing soil organic matter and carbon storage. Economic analyses 
(Arsyad et al., 2020; Huang et al., 2015) of the different intercropping systems have indicated that farm 
incomes were increased from intercropping as it is leading to on-farm cost savings and reduced reliance 
on external inputs.  
In the Mediterranean countries, one of the legumes extensively used in intercropping with cereals is 
common vetch, an annual legume with a climbing growth habit and high levels of protein. Common vetch 
(Vicia sativa L.) can be an alternative grain legume to fava beans, peas, lupins, and soybeans due to its 
high grain protein content. Vetch may grow in marginal cropping zones and is drought-tolerant and 
resilient to changeable annual weather patterns (Nguyen et al., 2020). Intercropping of white clover and 
cereals has been promoted for low-input farming systems because it offers several benefits for 
sustainability  (Thorsted et al., 2006). Clover is a forage legume cultivated in the temperate world, noted 
for its high-protein feed. The benefits include atmospheric nitrogen fixation, soil conservation, structural 
soil improvements, and a suite of agroecosystem services including increased soil microbial activity, the 
phytoremediation of polluted soils, and the provision of food for pollinators (McKenna et al., 2018). 
Another objective of the AgrEcoMed project will be also to compare the effects in terms of yields, quality, 
growth rate, seed rate (high vs. low), nitrogen management (high vs. VRT), and ecological services 
(mainly N provisioning and weed control) of simultaneous intercropping strategies (Figure 9) of clover 
(Trifolium repens L. cv. Kardinal) with durum wheat (Trefoil 35 kg /ha + Wheat cv Tirex 150 kg/ha) and 
common vetch (Vicia sativa L. cv. Ereica) with durum wheat (Vetch 80 kg /ha + Wheat cv Tirex 150 kg/ha). 
Two stand-alone wheat cropping strategies with seed rates of 150 kg/ha and 250 kg/ha with be used as 
control strategies.  
 
2.2.5 Cereals demonstration fields 

Wheat represents a target crop for Mediterranean agriculture. Wheat provides 20 % of calories to the 
world population, highlighting the relevance of this crop for current and future strategic cultivation. In 
this context, we have to intensify efforts toward crop improvement and yield stability under conditions of 
sustainable agricultural production (Royo et al., 2017). To achieve this goal it is crucial to use crop varieties 
that are either best adapted to the specific environments or have the potential and flexibility of becoming 
adapted to a more dynamic environment. This requires the growth of plants that show greater resistance 
to abiotic and biotic stresses and can maintain yields under adverse or low-input conditions. The use of 

                                                           
3 https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL6-2022-BIODIV-01-05 
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improved cultivars and the adoption of appropriate crop management practices have significantly 
increased yields. It is known that a well-planned crop rotation (with the adoption of legume and/or 
cruciferous crops within the cereal rotation scheme) can increase the sustainability of the system in dry 
regions of the Mediterranean basin (Ryan et al., 2008).  
 

 
Figure 10. The layout of cereal demonstration fields.  

 
In the AgrEcoMed project, wheat and legumes will follow the same rotation scheme already in place on 
the farm, but the wheat growth dynamics and productivity of modern varieties (cv. Marco Aurelio, Tirex, 
Svevo) grown on the farm will be compared with durum modern with ancient varieties (i.e cv. Senatore 
Capelli). The fertilization plan will be customized and used for the variable rate distribution of fertilizers 
through the "precision farming" technique. 
Fertilizers and herbicides are major input costs in many cropping systems worldwide. Manipulation of 
crop fertilization is a promising agronomic practice in reducing weed interference in crops. Many weeds 
are high N consumers, thus limiting N for crop growth. Research has shown that crop–weed competitive 
interactions can be altered by N dose, source, application timing, and application method. At present, 
composts are mostly used within agriculture as a source of organic matter. Soil organic matter 
concentrations are declining in intensive arable rotations and the loss of organic matter from the soil is 
associated with increased soil erosion, particularly from fields of winter-sown cereals. At present, 
composts are mostly used within agriculture as a source of organic matter. Compost is the product of 
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artificially controlled bio-oxidation and humification of a mix of organic materials such as solid organic 
waste from green and woody biodegradable plant residues such as pruning waste, manure, and sewage 
waste. When compost is added to soil, it has multiple positive effects on its physical, chemical, and 
biological properties, which result in improvements in the productivity and quality of crops (Ho et al., 
2022). Using agricultural by-products, predominantly manure, as compost may also be an effective way 
to sequester carbon. A trial ran for 19 years (Tautges et al., 2019) showed that the use of compost and 
cover crops boosted soil carbon content by 12.6%. The use of bio-waste compost on land can have 
beneficial effects on the plant-soil system. Nine environmental benefits were identified in an extensive 
literature review: nutrient supply, carbon sequestration, weed pest, and disease suppression, increase in 
crop yield, decreased soil erosion, retention of soil moisture (blue water is saved), increased soil 
workability, enhanced soil biological properties and biodiversity, and gain in crop nutritional quality 
(Martínez-Blanco et al., 2013). Compost is not just beneficial to farming: because it is produced from 
waste, it also helps the circular economy process and leads to more sustainable production methods. It 
improves contaminated, compacted, and marginal soils through better soil water-holding capacity, 
nutrient retention, and soil structure. It provides cost savings over conventional soil, water, and air 
pollution remediation technologies.  
Particular attention in the AgrEcoMed project will be paid to assess the effects of the by-products and 
wastes, used for their use as compost for soil fertility, defense of crops, and weed control. The field 
experiment plots (Tirex- Compost and Svevo-compost) are designed to determine the growth dynamics 
of winter wheat to synthetic fertilizer level (high and low), nitrogen management (high vs. VRT), and 
fertilization management (conventional vs. a new concept of organic micro granular fertilizers with 
biostimulant action).  
Fusarium head blight (FHB) is the principal disease affecting wheat worldwide, decreasing grain quality, 
and production. This disease is mainly caused by members of the Fusarium graminearum species complex 
(FGSC), which can produce mycotoxins in the contaminated grains. The pathogen overwinters on crop 
residues (wheat straw). Trichoderma spp. is the most popular research tool as a microbial inoculant which 
has been largely used against several plant pathogenic fungi causing soil-borne, airborne, and post-
harvest diseases of the plant through their high antagonistic and mycoparasitic potential.  
Another objective of the agrEcoMed project is to evaluate the growth-promoting ability of wheat crops 
treated with bioformulation Trichoderma harzianum (Th3).  
 

2.3 Data collection 

During the field traits, all the data for monitoring cropping system behavior (crop growth analysis, yield 
quantitative and qualitative response, soil organic matter and nutrient balance, etc.) and the input of 
cultivation (seeds, fertilizers, energy for machinery, etc.) will be collected for the computation of energy 
balance and efficiency. Some of the core data to be collected include: 

i. Soil map and soil analysis and statistics; 
ii. Electric resistivity of soil; 

iii. Spatial analysis of soil physical-chemical characteristics;  
iv. Climate indexes (Average annual precipitation, Number of wet days per year, Mean elevation); 
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v. Crop chlorophyll content and leaf area index (LAI); 
vi. Timing of soil cultivation, sowing, and harvesting; 

vii. The seed rate and number of seedlings used for cultivation; 
viii. Type and quantity of N-P-K fertilizers and agro-chemicals for plant protection; 

ix. Fertilization maps; 
x. Soil amendment quantities; 

xi. Fuel and machinery expenditures for farming activities; 
xii. Human labor working hours; 

xiii. Type and quantity of soil conditioners and compost; 
xiv. The yield of main products and yield by-products; 

 

A customizable, generic life cycle inventory template for data collection was designed to facilitate the data 
collection. The field activities planned for WP1 will provide data, information, and materials for the 
activities of WP2, tasks 1,2,3,4, P UNIBAS, UNIBA, CREA-PB, CBS, and ENAM. WP3, task 1,2,3,4, P UNIBAS, 
UNIBA, UCO, UPV. WP4, task 1,2,3 P UNIBA, UCO, WP5, and WP6. The environmental impacts and damage 
generated by the cultivation of the products grown in the experimental tests will be carried out using Life 
Cycle Assessment (LCA), by following ISO 14040-44 standards. Additionally, the economic sustainability 
and potential economic benefits for farmers in given contexts will be explored.  

 

2.4 Delays and difficulties 

The most difficult factors to control in field trials are the environmental conditions (weather, pests and 
diseases, soil conditions). High variations of environmental factors reduce the consistency of results. It is 
like field experiments in that not all factors are controlled; therefore the level of variation is taken into 
account by using multiple replicates for the same experiment and the trials are repeated for at least three 
years. 
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